Lab 3 - Deploy your model
In this lab we are going to deploy the model wrappend in an API in an Azure Container Instance and sending data to it with postman.
1. Deploy to an Azure Container Instance
Download the scoring script
inference_folder = "./inference"
inference_script_url = "https://raw.githubusercontent.com/hnky/DevelopersGuideToAI/master/amls/resources/score.py"
inference_script_download_path = os.path.join(inference_folder,"score.py")
if not os.path.exists(inference_folder):
os.mkdir(inference_folder);
urllib.request.urlretrieve(inference_script_url, filename=inference_script_download_path)Create an inference environment
inference_env = Environment(name="simpsons-inference")
conda_dep = CondaDependencies()
conda_dep.add_pip_package("azureml-defaults")
conda_dep.add_pip_package("torch")
conda_dep.add_pip_package("torchvision")
conda_dep.add_pip_package("pillow==5.4.1")
inference_env.python.conda_dependencies=conda_depCreate an Inference config
Create a Azure Container Instance deployment config
Deploy the model to an ACI
This step can take up to 10 minutes
You can find the deployment location from your model back under the model: https://ml.azure.com
Note: if you don't see it immediately refresh the tab

2. Test the model in the API
Post an image to the endpoint
The easiest way to test your scoring endpoint is the code below.
Use Postman
Download Postman to your local machine
Get the scoring uri
Create a new request in Postman
POST request
Put scoring URL in call
Send a raw body with the JSON below. Make sure JSON is selected in orange next to the raw radio button

Try other images
End
Last updated
Was this helpful?